Do people like, still blog?

Tag Archives: statistics

Did you know, one of the reasons we’re in this recession is because of everyone’s favorite university – the University of Waterloo! Thanks to a couple of degree’s granted by UW, the Gaussian Copula function was invented.

Enter Li, a star mathematician who grew up in rural China in the 1960s. He excelled in school and eventually got a master’s degree in economics from Nankai University before leaving the country to get an MBA from Laval University in Quebec. That was followed by two more degrees: a master’s in actuarial science and a PhD in statistics, both from Ontario’s University of Waterloo. In 1997 he landed at Canadian Imperial Bank of Commerce, where his financial career began in earnest; he later moved to Barclays Capital and by 2004 was charged with rebuilding its quantitative analytics team.

His statistics degree helped him to come up with this:

It was a brilliant simplification of an intractable problem. And Li didn’t just radically dumb down the difficulty of working out correlations; he decided not to even bother trying to map and calculate all the nearly infinite relationships between the various loans that made up a pool. What happens when the number of pool members increases or when you mix negative correlations with positive ones? Never mind all that, he said. The only thing that matters is the final correlation number—one clean, simple, all-sufficient figure that sums up everything.

One of the things you learn in grad school is that correlation is often seen as a raison d’etre when it should be considered carefully.

Li’s copula function was used to price hundreds of billions of dollars’ worth of CDOs filled with mortgages. And because the copula function used CDS prices to calculate correlation, it was forced to confine itself to looking at the period of time when those credit default swaps had been in existence: less than a decade, a period when house prices soared. Naturally, default correlations were very low in those years. But when the mortgage boom ended abruptly and home values started falling across the country, correlations soared.

Oops.